
Chapter 21
Band-Pass Filters and Resonance

In Chapter 20, we discussed low-pass and high-pass fil-
ters. The simplest such filters use RC components — re-
sistors and capacitors. It is also possible to use resistors
and inductors to make RL filters. Their equations are
similar, but we normally try to avoid inductors wherever
possible, so RL filters are not as common.

We point out that such filters have a corner or cutoff
frequency, which is the frequency at which R = X. We
will see something similar here as well.

LC Circuits

The simplest band-pass filters are LC filters — they use
inductors and capacitors (though there is always some
extra resistance in the circuit which affects operation.)
These components can be connected in series or parallel
with each other; the resulting circuits are called series
resonant or parallel resonant circuits, respectively. The
word resonant is used because these circuits respond to
particular frequencies, much like the strings on a violin
or guitar. For that reason, they are also often called
tuned circuits.

Fig. 21-1 shows some examples of these circuits
connected in different ways. Both the series as well as
the parallel circuit have a resonant frequency which (ne-
glecting the effects of resistance) is the frequency at
which the XL of the inductor is equal to the XC of the ca-
pacitor. We can find this resonant frequency by solving
the equation

XL = XC

2 π f L = 
1

2 π f C

where f is the frequency, L is the inductance, and C is
the capacitance, for the frequency:

fresonant = 
1

2 π √ L C

The operation of both circuits depends on the fact
that the voltage and current in inductors and capacitors
are 90˚ out of phase. You may remember “ELI the ICE
man” — this little phrase reminds us that the voltage (E)
comes 90˚ before the current (I) in the inductor (the cur-
rent lags behind the voltage), but 90˚ after the current in
the capacitor (the current leads the voltage).

In the parallel-tuned circuit, the capacitor and induc-
tor are in parallel, and they therefore have the same
voltage. At the resonant frequency we also have
XL = XC; their reactances are equal. Since Ohm’s Law
for ac circuits says that V = I X, if the inductor and ca-

pacitor both have the same voltage and the same reac-
tance, they must also have the same current. and so they
both have the same current. But because one of these
currents leads the voltage by 90˚, whereas the other cur-
rent lags the voltage by 90˚, they are 180˚ apart. The
currents therefore go in opposite directions — when one
goes up, the other goes down. Hence the current in the
wire which leads to the parallel-tuned circuit must be
zero. Since the external current into the tuned circuit is
zero, the circuit behaves like an open circuit (which also
has a voltage but no current through it.)

The opposite happens in the series-tuned circuit.
Here, both the capacitor and the inductor have the same
current since they are in series. This time, the voltage
across one of them leads the current, while the voltage
in the other lags the current by 90˚. The two voltages are
therefore 180˚ apart. At resonance (which is another
way of saying “at the resonant frequency”), their reac-
tances are equal and so their voltages are equal, but op-
posite. The total voltage across the series circuit is
therefore zero, even though there is a current through it.
The circuit therefore behaves like a short circuit (which
also has a current but no voltage across it.)

We therefore form the following rules of thumb:
• At resonance, a parallel-tuned circuit behaves

like an open circuit.
• At resonance, a series-tuned circuit behaves like

a short.
• At other frequencies, both circuits have some

impedance. Close to the resonant frequency, the
circuits are not quite an open (for the parallel-
tuned) or short (for the series-tuned), but still
fairly close to it. The farther we go away from
the resonant frequency, the less the circuits be-
have like an open or short circuit. 

Fig. 21-1. Parallel and series resonant circuits
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Both of these circuits can be used as selective filters to
let some frequencies get through, and stop others. They
can be connected in one of two basic ways — either the
tuned circuit can be connected between a signal and
ground as in Fig. 21-1 (a) and (b) (in which case it will
short some of the signal to ground, depending on the
circuit’s impedance), or so that a signal has to travel
through the LC circuit to get from the input to the out-
put as shown in (c) and (d) (in which case more or less
will get through, again depending on the circuit’s im-
pedance).

Consider circuit (a), for example. At resonance, the
parallel-tuned circuit behaves like an open circuit, and
most of the input signal travels right through the resistor
to the output. Depending on the load at the output, there
may be some current in the series resistor and so there
may be some voltage loss, but we will ignore this. Away
from resonance, however, the tuned circuit is no longer
open; it causes an increased current to flow through the
series resistor, and the voltage drop therefore increases.
The farther away from resonance, the greater this drop,
and the smaller the output voltage. 

If we keep the input voltage constant but vary the
frequency, and then plot the output voltage vs. fre-
quency, we get a plot similar to Fig. 21-2 (a). We see
that the peak in output occurs at the resonant frequency,
and there is a dropoff on both sides. There is a band of
frequencies around resonance that do get through, while
frequencies far away from resonance are reduced
(though not entirely stopped). Since there is this band of
frequencies that get through, this is called a band-pass
filter. Circuit (c) in Fig. 21-1 is also a band-pass filter;
since the series-tuned circuit is a short circuit at reso-
nance, frequencies at (and near) resonance get through,
while frequencies farther away are reduced because the
series-tuned circuit now has some reactance.

Circuits (b) and (d) do the opposite — at resonance,
they stop the signal; circuit (b) does it by shorting the
signal, whereas circuit (d) does it by opening the path
between the input and output. Even near resonance they

reduce the signal, so they stop (or reduce) a band of fre-
quencies, as shown in Fig. 21-2 (b). They are therefore
called band-stop or band-reject filters.

Notice a similarity here with the RC low-pass or
high-pass filters of the previous chapter. Although we
there referred to a cutoff frequency, the actual curves
showed that the “cutoff” was actually a very gradual
drop. Here too we have a gradual change on both sides
of the resonant frequency.

Bandwidth

Returning to Fig. 21-2 (a), we’re interested in mea-
suring how wide a band of frequencies gets through a
band-pass filter; that is, we want to know the
bandwidth. Clearly the width of the curve depends on
where you measure it; the customary point is to measure
the bandwidth at the point where the height of the curve
is 70% of the maximum height; this is labelled BW in
Fig. 21-2. (To be exact, the amplitude is 1 ⁄ √2 or 0.707
of the maximum.) This point also happens to be 3 dB
below the maximum, as we can see from

20 log10 
0.707

1
 = 20 × (−0.15) = −3 dB

and so it is often called the “–3 dB point” or “half-
power point”. The left side –3 dB point is called the
lower 3 dB point, while the other is the upper 3 dB
point. Note that the minus sign is often skipped; it’s un-
derstood that there is a loss there and so it must be
minus.

Quality or “Q”

The narrower the bandwidth, the “better” the circuit,
and so we define the Q or Quality of a tuned circuit as

Q = 
resonant frequency

bandwidth

For example, if a circuit resonant at 1 MHz has a
bandwidth of 50 kHz (at the –3 dB point), then the Q
would be 20; if the bandwidth is only 40 kHz, then the
Q would be 25, which would be considered “better” or
“higher quality” for some applications. Fig. 21-3 shows
how the Q affects the response and bandwidth of a
tuned circuit — higher Q means steeper skirts.

The Q, in turn, depends on the resistance in the cir-
cuit. Ideally, a tuned circuit would consist of only ca-
pacitance and inductance; with no added resistance; the
Q would be infinite because the circuit would be ideal.
In practice, however, there is always some resistance in
a circuit, and this degrades the quality. 

The added resistance could be in one of two places:
it could be in series with the inductor (for instance,
every inductor consists of wire that has some resis-

Fig. 21-2. Band-pass and band-reject frequency
responses
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tance), or it could be in parallel with it (such as the re-
sistance of whatever other circuitry the tuned circuit is
connected to). If XL is the reactance of the inductor at
the resonant frequency, then the Q is defined as

Qseries = 
XL

Rseries

if the resistance is in series with the inductor, and it is

Qparallel = 
Rparallel

XL

if the resistance is in parallel. Note that, since R and XL
are both in ohms, Q has no units.

In most cases, there are resistances both in series and
in parallel with the inductor. In that case, we need to
take both effects into our calculations. There are some
fairly complex equations used in circuit theory which
give us the total Q, but a much easier way of finding the
equivalent actual Q due to both resistances is 

Qactual = 
Qseries Qparallel

Qseries + Qparallel

You may recognize that this is the same format as the
“product over the sum” formula for parallel resistors. 

Example 21-1. Q and Bandwidth

Let’s do a sample problem: what is the bandwidth
for the circuit in Fig. 21-4? First, find the resonant fre-
quency:

f = 
1

2 π √ L C
 = 

1

2 × 3.14159 × √10−3  × 10−6  = 5033 Hz

Actually, if we used the full equation that many text-
books give for the resonant frequency when there is a
resistor inside the tuned circuit, we would find that the
resonant frequency is about 5038 Hz. But the difference
is only about 1⁄10%, and so our simpler equation is per-
fectly adequate.

Next, find XL at this frequency:

XL = 2 π f L = 2 × 3.14159 × 5033 × 10−3 = 31.623 Ω

There is a 1-ohm resistor in series with the inductor, so
the series Q is 

Qseries = 
XL

Rseries
 = 

31.623
1

 = 31.623

What about the parallel resistance? If we assume that
the signal generator has zero output resistance and im-
agine that we are looking outward from the inductor at
whatever resistances are outside, we would see the 500-
ohm resistor in parallel with the inductor. (We could
prove that more rigorously by applying Thevenin’s the-
orem). Hence we use 500 ohms in the parallel Q for-
mula:

Qparallel = 
Rparallel

XL
 = 

500
31.623

 = 15.811

The actual Q is therefore 

Qactual = 
Qseries Qparallel

Qseries + Qparallel
 = 

31.623 × 15.811
31.623 + 15.811

 = 10.54

Note how the actual Q is a combination of the series and
parallel Q. The fact that the equation has the same form
as the “product over the sum” equation for parallel re-
sistors means that we can apply similar reasoning to the
Q as we can to parallel resistors. That is, 
• When two resistors are in parallel, the total par-

allel resistance is always smaller than the smaller
resistor. Likewise, the actual Q is always smaller
than either the parallel Q or the series Q.

• If one of two parallel resistors is much larger
than the other, we can approximate the total par-
allel resistance by ignoring the larger resistor.
The same applies to the Q. For example, if the
series and parallel Q were 5 and 50, the actual Q
would be 4.55, which is very close to 5, the
smaller Q. Hence it is the smaller Q that plays a
major role in setting the actual Q.

We now find the bandwidth from

Q = 
resonant frequency

bandwidth
           

bandwidth = 
resonant frequency

Q
 = 

5033 Hz
10.54

 = 477 Hz

Fig. 21-4. Example for calculating the Q and bandwidth

Fig. 21-3. Effect of Q on the bandwidth
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Fig. 21-5 shows the actual bandpass for this circuit,
with the gain plotted in dB. At the peak (which occurs
at the actual resonant frequency of 5038 Hz) there is a
loss of approximately 3.5 dB in the circuit, so the peak
plots at −3.5 dB.

The measured resonant frequency is 5038 Hz, the
lower 3-dB frequency (the lower frequency at which the
gain drops by 3 dB, from –3.5 dB down to –6.5 dB) is
4805 Hz, and the upper 3-dB frequency is 5281 Hz. The
measured bandwidth is thus

5281 Hz − 4805 Hz = 476 Hz

which is quite close to the calculated value.
Incidentally, the frequency scale in Fig. 21-5 is lin-

ear; this is fairly common when only a small range of
frequencies is plotted; when plotting large spans of fre-
quencies, however, we generally use a logarithmic fre-
quency scale, as shown in Fig. 21-6.

Poles and Zeroes

Now that we have learned some basic ideas about band-
pass filters, let’s return to s-plane poles and zeroes as
we discussed in the previous chapter.

In a way, we can think of the bandpass filter as a
combination of a high-pass filter (which removes the
low frequencies) and a low-pass filter (which removes
the high frequencies.) The simplest low-pass filters are
first-order and have one pole; the simplest high-pass fil-
ters are also first-order and have one pole and one zero.
The simplest band-pass filter, however, is a second-
order filter and has two poles and one zero.

These are located as shown in Fig. 21-7. The zero is
at the origin; one pole is up at a distance equal to the
resonant frequency and left a distance equal to half of
the bandwidth BW; the other pole is the same distance
to the left, but down a distance equal to the resonant fre-
quency. To find the gain at any frequency, plot that fre-
quency up on the frequency axis, and then calculate G
as

Gain = BW × 
distance to the zero

distance to one pole × distance to other pole

where BW is the 3-dB bandwidth. This forces the gain
at the resonant frequency to be exactly 1; that is, 0 dB.

Example 21-2. Second order band-pass

Let’s repeat the circuit of Fig. 21-4, using the data from
Example 2-1. Since the resonant frequency was found
as 5033 Hz, we plot the two poles a distance of 5033 up
and down.  The bandwidth was 477 Hz, so the poles are

Fig. 21-5. Frequency Response for Example 21-1

Fig. 21-6. More complete frequency response for the
example

Fig. 21-7. Zero and poles for band-pass filter
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plotted a distance of 477/2 or 238.5 to the left. The zero
is at the origin, as shown in Fig. 21-8 (except that the
figure is not drawn exactly to scale).

Let’s now say that we wish to calculate the gain at
some frequency f, say, 6000 Hz. The distance from the
point f to the zero is just equal to the frequency f. The
distance D1 to the top pole is

D1 = √(f − 5033)2 + 238.52

= √9672 + 238.52 = 995.98

The distance D2 from the point f to the bottom pole
is

D2 = √(f + 5033)2 + 238.52

= √ 110332 + 238.52 = 11035.58

Finally,

Gain = BW × 
distance to the zero

distance to one pole × distance to other pole

= 477 × 
6000

995.98 × 11035.58
 = 0.260

which converts to -11.7 dB.
Compare this with Fig. 21-5, which says that the

gain for this circuit at 6000 Hz is roughly –15.2 dB —
why the difference of about 3.5 dB?

Simple. The poles and zeros don’t know the exact
structure of the circuit, and so don’t know that the two
resistors in the circuit (see Fig. 21-4) are losing some
signal; thus the gain at the resonant frequency is –3.5
dB, as shown in Fig. 21-5, not 0 dB. Thus all the gains

are really 3.5 dB less than the pole-zero plots would
show.

Fig. 21-9 illustrates the point. All of the curves in
the figure look the same and describe the same fre-
quency response. The only difference is that some are
higher than others, meaning that there are different
amounts of gain or loss in the circuit, but these gain dif-
ferences do not affect the basic frequency response.

Higher-order bandpass filters

With low- or high-pass filters, we went to higher orders
to get steeper skirts, and greater attenuation above (or
below) the corner frequency. With band-pass circuits,
we go to higher orders for similar reasons.

With a band-pass filter, you can get steeper skirts
close to the center frequency just by going to a higher
Q, as shown in Fig. 21-3. Unfortunately, steeper skirts
and greater attenuation also narrow the bandwidth,
which is often bad, and the higher Q does not improve
the slope far away from resonance. A higher-order filter
lets us get both a sharp filter with steep skirts, and also
(if we wish) a larger bandwidth. 

Fig. 21-10 shows how to get a larger bandwidth. We
take  several second-order band-pass filters and stagger-

Fig. 21-8. Poles and zeroes for Example 21-2

Fig. 21-10. Stagger tuning for greater bandwidth

Fig. 21-9. Identical response curves
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tune them; that is, tune them all to slightly different fre-
quencies. Sending the signal through all three filters,
one after another, gives us a sixth-order filter (the dark
curve) with a wider bandwidth and a flatter top. How-
ever, it’s important to carefully adjust each individual
filter so it is resonant at the correct frequency and has
the correct Q; otherwise the result may not be what we
want.

As in the previous chapter, we can select various
kinds of filters. A Butterworth filter will be maximally
flat — the top of the pass band will be as smooth as pos-
sible. A Chebyshev filter may have some ripple at the

top, but will have sharper sides. A Bessel or other kind
of filter may be good for some other reason.

To select the correct center frequency and Q for
each filter, we must decide where to put its poles. We
do it very much like we did in Chapter 20 — by placing
the poles on circles or ellipses, as in Fig. 21-11. To start,
you locate the center frequency of the desired filter on
the frequency axis. Two sets of poles are needed — one
above the origin and one below, since each filter has a
pair of poles, one on top, the other on bottom. Fig. 21-
11 only shows the top sets of poles, but the bottom is a
mirror image.

Then you draw a circle at that point; the circle diam-
eter should equal the overall desired bandwidth (you
would use an ellipse for a Chebyshev filter; the flatter
the ellipse, the more ripple.)

Then you position the poles evenly around the cir-
cle, as shown. For each pole, there is a matching pole
“down under”, plus a zero at the origin. For each pole
(and its match down under and its zero) there will be a
single second-order band-pass filter circuit (called a
stage), with the signal having to pass from one filter
stage to the next. 

As before, each filter stage can be either an active
filter or a passive filter. But, again as before, passive fil-
ter stages cannot be connected one right after another
without special care; the safest is to separate them by an
amplifier.

Active Band-Pass filters

Just as with low-pass or high-pass filters, band-pass fil-
ters can be designed with op-amps to make an active fil-
ter. Fig. 21-12 shows a popular circuit with one op-amp
which makes a second-order active band-pass filter. The
component values are easy to find from the following
equations. Given the resonant frequency f, the desired
Q, and the desired gain G, choose a convenient value
for the capacitors C. For typical audio filters, common
values are either 0.1 µF or 0.01 µF.  Then

R1 = 
Q

2πfGC

Fig. 21-11. Higher-order band-pass filter pole positions

Fig. 21-12. Active second-order bandpass filter
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R2 = 
R1G

2Q2 − G

R3 = R4 = 2GR1

Since capacitors are seldom the exact values they are la-
belled, resistors R2 and R3 are usually made somewhat
larger and variable, so the center frequency and Q can
be adjusted to the exact desired values.

Example 21-3. Fourth-order Butterworth
active band-pass filter

Assignment: Design a four-pole active Butterworth fil-
ter centered at 5000 Hz and having a bandpass of 500
Hz. Since the circuit of Fig. 21-12 is only a two-pole fil-
ter, we will need two stagger-tuned cascaded stages.

Fig. 21-13 shows the first step — positioning the
poles. We will use a total of four poles and two zeroes,
but only the top two poles need to be shown, since we
know that the other two poles (down below) are mirror
images of these two, and the two zeroes are both at the
origin.

We first draw a semicircle with its center at 5000
Hz, and with a diameter equal to the 500 Hz bandwidth.
Now place the two poles at 45º angles as shown.

The two poles are at the corners of 45º triangles
whose hypothenuse is 250 (the radius of the circle,
which is half of the bandwidth). We know that the short
sides of a 45º triangle are 1 ⁄ √2 of the hypothenuse,
which is 250 ⁄ √2 = 177. This places the two poles at
heights of

5000 + 177 = 5177 Hertz

and

5000 − 177 = 4823 Hertz

and 177 to the left of the frequency axis. We now have
the poles for the two second-order filter stages.

The first stage has poles at (–177, 5177). The center
frequency of this stage is thus 5177 Hz. Since the dis-
tance to the left (–177) is half the bandwidth, the
bandwidth is 354 Hz, and so the Q is 5177/354 or 14.6.

The second stage has poles at (-177, 4823). The cen-
ter frequency of this stage is thus 4823 Hz, the
bandwidth is also 354 Hz, and the Q is 4823/354 or
13.6.

Let’s use a 0.01 µF capacitor and design for a gain
G of 10 per stage. For the first stage,

R1 = 
Q

2πfGC
 = 

14.6

2π ×5177 × 10 × 10−8
 = 4488 ohms

R2 = 
R1G

2Q2−G
 = 

4488 × 10

2×14.62−10
 = 107.8 ohms

R3 = 2GR1 = 2 × 10 × 4488 = 89.76 Kohms

For the second stage, 

R1 = 
Q

2πfGC
 = 

13.6

2π ×4823 × 10 × 10−8
 = 4488 ohms

R2 = 
R1G

2Q2−G
 = 

4488 ×10

2×13.62−10
 = 124.7 ohms

R3 = 2GR1 = 2 × 10 × 4488 = 89.76 Kohms

Fig. 21-14 shows the frequency response of the two in-
dividual stages (light lines) and the combined circuit
with the two stages in cascade (heavy line) as calculated
from the pole-zero positions; Fig. 21-15 shows the fre-
quency response of the actual circuit using the above
components.

Note that the response in Fig. 21-14 is not quite
symmetrical. There are several reasons. Partially, there
are always some slight rounding errors in doing calcula-
tions; the results might look a bit better if we carried all

Fig. 21-13. Poles for Example 21-3
Fig. 21-14. Response for Example 21-3, from poles and

zeroes
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answers out to eight, ten, or even more decimal places.
Thus, due to slight approximations, the actual center fre-
quency of the plot in Fig. 21-14 is 5006 Hz, not 5000
Hz.

A second reason is that Fig. 21-14 is plotted on reg-
ular linear graph paper; the curve would look more sym-
metrical on the logarithmic paper that is normally used
for frequency response curves. Let’s look into that a bit
more:

With the actual center frequency at 5006 Hz and a
500 Hz bandwidth, we would expect the –3 dB points to
be at (5006 – 250) = 4756 Hz, and at (5006 + 250) =
5256 Hz. But they are actually at 4763 and 5262 Hz, be-
cause on logarithmic graph paper, 5006 would be ex-
actly centered between 4763 and 5262 Hz. That is, on
log graph paper, equal ratios occupy equal space — the
ratio 5006/4763, which defines the distance from the
center frequency to the lower –3 dB frequency, is the
same as the ratio 5262/5006, which defines the equal
opposite distance. We then have

5006
4763

 = 
5262
5006

5006 × 5006 = 50062 = 4763 × 5262

and therefore

5006 = √ 4763 × 5262

Thus the center frequency is not at the arithmetic mean
(average or half-way between) the –3 dB frequencies,
but at the geometric mean.

We use normal graph paper rather than logarithmic
graph paper when plotting relatively small frequency
differences because commercial log paper is only avail-
able with 4 or more cycles on the page. A small fre-
quency difference, which often takes just a fraction of
one cycle, would be too small to see on the graph. Fig.
21-16 shows how the data from Fig. 21-14 would look
on such a graph.

Fig. 21-15. Response of Example 21-3, from circuit
values

Fig. 21-16. Data from Fig. 21-14 on regular log paper
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